
C Programming
Duration: 5 days (Face-to-Face & Remote-Live), or 35 Hours (On-Demand)

Price: $2495 (Face-to-Face & Remote-Live), or $1495 (On-Demand)

Discounts: We offer multiple discount options. Click here for more information.

Delivery Options: Attend face-to-face in the classroom or remote-live attendance.

Students Will Learn

Components of a C program

Using the C preprocessor

Using standard runtime libraries

Using make to build programs

Working with debugger utilities

Using data types, storage classes and
scope

Using typedef to make code more
readable and portable

Using operators and expressions

Working with conditional and looping
constructs

Initializing a pointer

Accessing the value addressed by a

pointer

Returning the value of a function

Declaring argument data types

ANSI function prototype syntax

Declaring and initializing arrays and
multidimensional arrays

Using Strings and character
manipulation

Declaring and instancing a structure

Defining a union

Accessing command line arguments
and environment variables

C runtime library standard I/O
functions

Course Description

This hands on C programming course provides a comprehensive introduction to the ANSI C
language, emphasizing portability and structured design. Students are introduced to all
major language elements including fundamental data types, flow control, and standard
function libraries. Thorough treatment is given to the topics of string and character
manipulation, dynamic memory allocation, standard I/O, macro definition, and the C
runtime library. The course explains the use of aggregate structures, unions, and pointers
early on so the students can practice extensively in the hands on labs. Structured
programming constructs and varargs functions are also covered. Emphasis is given to the
processing of command line arguments and environment variables so students will be able
to write flexible, user-friendly programs. The course also includes coverage of portability
tips drawn from experienced programmers working in production environments.

https://www.traininghott.com/Discounts.htm
https://www.traininghott.com/Remote-Training.php

Comprehensive hands on exercises are integrated throughout to reinforce learning and
develop real competency.

Course Prerequisites

Understanding of fundamental programming concepts.

Course Overview

Overview of C

Operating System Independence
Design Goals and Capabilities
Flavors of C

Compiler Directives and the C
Preprocessor

Compile-Time Directives
Use of typedef
C Preprocessor Syntax

Fundamental Data Types, Storage
Classes, and Scope

Fundamental Data Types and
Qualifiers
Constants and Strings
Storage Classes
Scope and Block Structure
Scope and Data Hiding
Data Initialization

Pointers and Dynamic Allocation

Advantages of Pointers
User of Pointers
Pointer and Address Arithmetic
Dynamic Storage Allocation
sizeof Operator
Double Indirection

Macros

Functions vs. Inlining
Purpose of Macros
Use of Macros

Making Code More Readable
Auto Adjustment of Compile
Time Values
Conditional Compilation
Making Code Portable
Simplifying Complex Access
Calculations

Advanced Micro Design Tips
Using Macros to Help Write Portable
Programs
When to Use a Macro instead of a
Function
Using Macros for Debugging

Arrays

Purpose of Arrays
Declaring an Array
Initializing an Array
Addressing Elements
Stepping Through an Array
Variable Size Arrays
Arrays of Pointers
Arrays of Strings
Passing an Array to a Function
Dynamic Memory Allocation
Multidimensional Arrays

Basic Formatted I/O

Standard I/O Library
Character Set Encoding
Standard Input and Output
Character I/O Functions
Formatted I/O Functions

Program Debugging

Problem Analysis
Instrumenting with printif
Instrumenting with ctrace
The Purpose of Debuggers
How Not to Use Debuggers

String Constants Symbolic Debuggers

Operators and Expressions

Arithmetic, Logical, and Bit Operators
Precedence and Associativity
Assignment and Casting
The Conditional Operator

Flow Control Constructs

Conditional Constructs: if, switch
Looping Constructs: while, do, for
Programming Style

Functions (Subroutines)

Purpose of Functions
Functions vs. Inlining
Automatic Variables
The Argument Stack
Passing By Value
Passing By Reference
Declaring External Functions
Function Prototyping
ANSI Prototyping
The _NO_PROTO Compiler Symbol
Varargs Functions
Passing a Function as an Argument
Designing Functions for Reusability
Calling a Function from Another
Language
Returning a Dynamically Allocated
Value Using Double Indirection
Casting the Return Value of a Function
Recursion and Reentrancy

Structures

Purpose of Structures
Defining and Declaring Structures
Accessing Members
Pointers to Structures
Dynamic Memory Allocation
Passing a Structure to a Function

As a Pointer
Passing the Actual Structure

Advanced Structures and Unions

Nested Structures
Arrays of Structures
Bit Fields
Unions
Linked Lists

C Runtime Library Standard Functions

Character I/O
Unformatted File I/O
Formatted File I/O
Math Functions
Miscellaneous Functions

Strings and Character Manipulation

Strings as Character Arrays
String Library Functions
Reading and Writing Strings

Accessing Command Line Arguments
and Environment Symbols

argc and argv
Parsing Command Line Options
Accessing the Environment Array

Structured Programming

Structuring Code for Quality,
Reliability, Maintainability
Designing for Modularity and
Reusability

Advanced Programming Consideration

Writing Portable Code
Use of Macros
ANSI C Limits
Feature Test Macros
Client/Server Design
Performance Considerations

Hands On Technology Transfer
The Best Way to Transfer Technology Skills

1 Village Square, Suite 8
14 Fletcher Street

Chelmsford, MA 01824

Copyright © 2021 Hands On Technology Transfer, Inc.

	Local Disk
	C Programming Course | C Training | Learn C Programming

